Preparation and Crystal Structure Refinement of Li₄Mn₅O₁₂ by the Rietveld Method Toshimi Takada, Hiroshi Hayakawa, and Etsuo Akiba Department of Inorganic Materials, National Institute of Materials and Chemical Research, Higashi 1-1, Tsukuba, Ibaraki 305, Japan Received May 16, 1994; in revised form August 22, 1994; accepted August 29, 1994 Well-crystallized Li₄Mn₅O₁₂ powder has been prepared by heating a eutectic mixture of lithium acetate LiOAc and manganese nitrate Mn(NO₃)₂ at 700°C for 1–3 days in an O₂ atmosphere. The Li and Mn content in the final products was determined from atomic absorption spectroscopy. The tetravalent manganese in the final product was found to be 95% based on the active oxygen content determined by KMnO₄ titration. The structure of Li₄Mn₅O₁₂ crystallites was refined by the Rietveld method from powder X-ray diffraction data as a cubic spinel, a = 8.1616(5) Å, space group $Fd\overline{3}m$. Li₄Mn₅O₁₂ crystallites are stable at temperatures up to 600°C in oxygen but decompose to spinel LiMn₂O₄ and monoclinic Li₂MnO₃ at temperatures higher than 530°C in N₂. © 1995 Academic Press, Inc. #### 1. INTRODUCTION The typical cubic spinel LiMn₂O₄ (1) possesses a prototypic symmetry of $Fd\overline{3}m$. (O_h⁷), in which oxygen ions form a cubic-close-packed array occupying the 32e sites of the space group; Mn ions occupy the 16d sites (half of the octahedral sites) and Li ions occupy the 8a sites (one-eighth of the tetrahedral sites). The interstitial octahedral sites (16c), which are interconnected three-dimensionally by sharing common edges with six like near neighbors exactly as the 16d sites but shifted by half a lattice parameter in space, provide 3D conduction pathways for Li⁺ ions. These structural characteristics make the spinel-type lithium manganese oxides practical as Li⁺ adsorbents and cathode materials for electrochemical cells and rechargeable lithium batteries. Extensive research has been directed toward the development and optimization of the lithium manganese oxide electrodes for rechargeable lithium batteries (2, 3). Thackeray and co-workers (4-6) have demonstrated that the [Mn₂]O₄ framework is capable of reversibly accommodating Li over a wide range (i.e., Li_{0.4}[Mn₂]O₄ to Li₂[Mn₂]O₄). Powder X-ray diffraction patterns of the ex- Ooi and co-workers (10–12) have systematically investigated the Li⁺ extraction/insertion reactions with spinel-type Li-Mn-O compounds for the development of Li⁺ absorbents for the extraction of Li⁺ ions from sea water. The acid-treated samples of Li_{1-x}Mn_{2-z}O₄ or λ -MnO₂ have shown excellent selectivity of Li⁺ from sea water as compared to the existing absorbents. It has also been found that the oxidation state of manganese in the heat-treated precursor plays a very important role in the formation of Li⁺ insertion sites. The spinel-type precursor with trivalent Mn such as LiMn₂O₄ gives a redox-type site on the basis of Eqs. [1] and [2], whereas the precursor with tetravalent Mn alone (such as Li₄Mn₅O₁₂) simply gives an ion-exchange-type site based on Li⁺/H⁺ ion exchange as shown in Eq. [3]: $$4(\text{Li})[\text{Mn}^{3+}\text{Mn}^{4+}]O_{4} + 8\text{H}^{+} \rightarrow 3(\diamondsuit)[\text{Mn}^{4+}]_{2}O_{4} + 4\text{Li}^{+} + 2\text{Mn}^{2+} + 4\text{H}_{2}O \quad [1]$$ $$(\diamondsuit)[\text{Mn}^{4+}]_{2}O_{4} + n\text{LiOH} \rightarrow (\text{Li}_{n}\diamondsuit_{1-n})[\text{Mn}_{n}^{3+}\text{Mn}_{2-n}^{4+}]O_{4} + \frac{n}{2}\text{H}_{2}O + \frac{n}{4}\text{O}_{2} \uparrow [2]$$ tracted/inserted samples confirmed that the spinel framework remained intact during the extraction/insertion process. The lattice parameter, however, decreased from 8.24 Å for LiMn₂O₄ to 8.03 Å for λ-MnO₂ due to the extraction of Li+ and the simultaneous dissolution of Mn²⁺ resulting from the disproportionation reaction of 2Mn³⁺ → Mn²⁺ + Mn⁴⁺. This leads to a decline in electrode capacity and consequently, poor rechargeability of lithium secondary batteries. Most approaches directed at reducing the portion of Mn3+ have been limited to doping, whereby, another ion, such as Co, Ni, Fe, Mg, is used to replace Mn³⁺. However, it has been revealed that doping is not very effective. Recently, Kock and co-workers (7-9) demonstrated that the Mn4+ defective spinels Li₂O · $yMnO_2$ (y = 2-4, or $Li_2Mn_4O_9-Li_4Mn_5O_{12}$) could be synthe sized at temperatures below 400°C. Their preliminary results showed that Mn⁴⁺ defective spinels possessed higher electrode capacity and better rechargeability than that of LiMn₂O₄. ¹ To whom correspondence should be addressed. (Li)[Li_{0.33}Mn⁴⁺_{1.67}]O₄ + 1.33H⁺ $$\rightarrow$$ (H)[H_{0.33}Mn⁴⁺_{1.67}]O₄ [3] The symbols (), [], and \diamondsuit are, respectively, 8a tetrahedral sites, 16d octahedral sites, and vacant sites. The Li⁺ extraction/insertion reaction occurs preferentially with ion-exchange-type sites. Consequently, the structural expansion/contraction or the disproportionation reaction $2Mn^{3+} \rightarrow Mn^{2+} + Mn^{4+}$ is suppressed. The high Li/Mn ratio of 0.8 for the Mn^{4+} defective spinel Li₄Mn₅O₁₂ or Li_{1.33}Mn_{1.67}O₄ makes it particularly attractive for applications as a Li⁺ selective absorbent. The difficulty in synthesizing well-crystallized Mn⁴⁺ defective spinels is due to the concomitant formation of Mn³⁺ by the reduction of tetravalent manganese at 400°C and above. The reduction can be simply expressed in oxide forms by $$2MnO_2 \rightarrow Mn_2O_3 + \frac{1}{2}O_2.$$ [4] For a number of Mn⁴⁺, Li⁺-containing spinels of the type LiMea+Mn4+O4 (Me represents bivalent or trivalent metal ions) prepared at 750°C. Blasse (13) found that the content of active oxygen determined by titration was generally somewhat lower than theoretically expected, i.e., larger amounts of Mn³⁺ were present in such compounds. He indicated that at temperatures below 400°C, it was, however, not possible to obtain single-phase reaction products owing to the low rate of solid state reaction. Recent studies conducted by Thackeray's group (8, 11) revealed that Li₄Mn₅O₁₂ crystallites obtained via the solid state reaction of Li₂CO₃ and MnCO₃ at 400°C, was an intermediate phase, or metastable. They indicated that Li₄Mn₅O₁₂ would decompose to the stable spinel LiMn₂O₄ and monoclinic Li₂MnO₃ (14, 15) at temperatures higher than 400°C. This paper describes our synthesis and characterization of the well-crystallized Li₄Mn₅O₁₂. It will be shown that the oxidation state of manganese in the precursor plays an important role in the formation of the well-crystallized Mn⁴⁺ defective spinels.Once Li₄Mn₅O₁₂ crystallites form, they are stable up to 600°C in oxygen. The results of structure refinements and quantitative phase analyses by the Rietveld method based on the powder X-ray diffraction data are presented. #### 2. EXPERIMENTAL ### 2.1. Preparation of Well-Crystallized Li₄Mn₅O₁₂ Preliminary synthesis was conducted using a variety of Li and Mn compounds as raw materials including lithium carbonate Li₂CO₃, nitrate LiNO₃, acetate LiOAc; manganese carbonate MnCO₃, nitrate Mn(NO₃)₂, and the oxides Mn_2O_3 , MnO_2 . It was found that lithium acetate dihydrate $LiOAc \cdot 2H_2O$, and manganese nitrate hexahydrate $Mn(NO_3)_2 \cdot 6H_2O$, were superior to other starting materials in the preparation of $Li_4Mn_5O_{12}$ for the following reasons: - (i) The extremely low melting points of $Mn(NO_3)_2 \cdot 6H_2O$ (28°C) and LiOAc $\cdot 2H_2O$ (70°C) make it possible to obtain a homogeneous liquid precursor. Also, it was found that a uniform eutectic was formed simply by heating them at 100°C. - (ii) The oxidation of Mn(NO₃)₂ and LiOAc occurred simultaneously at very low temperatures below 200°C, thereby converting the eutectic to a highly reactive solid phase Mn⁴⁺ precursor consisting of manganese oxide MnO₂ and amorphous Li₂O. The preparation process developed for Li₄Mn₅O₁₂ is schematically shown in Fig. 1. 99.9% pure LiOAc · 2H₂O and Mn(NO₃)₂ · 6H₂O were purchased from WAKO Pure Chemical Industries, Ltd. and used without further purification. First, 40.0 g of Mn(NO₃)₂ · 6H₂O and 11.373 g of $LiOAc \cdot 2H_2O$ (Li/Mn = 0.8 in mole) were placed in a 1000 ml separable flask and mixed at 100°C for 1 hr with stirring under flowing O₂ gas. The eutectic liquid thus obtained was slowly oxidized at 200°C for 6 hr in O₂. The solid obtained was then powdered and pelletized (5 mm thick, 10 mm in diameter). Finally, the pellets were heated in a silica tube to a temperature of 500-850°C at a rate of 100°C/hr with a cylinder electric furnace and held there for 1-2 days with 200 ml/min of O₂ flowing during the crystallization of Li₄Mn₅O₁₂. The samples thus obtained were labeled after the reaction temperature and duration as ANT500-2D, ANT600-2D, ANT700-2D, and ANT850-1D. Most characterizations were carried out on sample ANT700-3D which was prepared by heating at 500°C for 1 day and then at 700°C for 3 days to insure good crystallinity. The standard spinel LiMn₂O₄ was prepared in air by the solid reaction of Mn₂O₃ and Li₂CO₃ in a 2:1 molar ratio. Initially, it was heated at 650°C for 12 hr in order to decompose the Li₂CO₃; this was followed by heating at 850°C for 24 hr. The monoclinic phase Li₂MnO₃ was prepared by the solid reaction in air of Li₂CO₃ and MnCO₃ in a 1:1 molar ratio at 800°C for 24 hr. FIG. 1. Scheme for the preparation of well-crystallized Li₄Mn₅O₁₂. ### 2.2. Composition Analysis and Characterizations of Li₄Mn₅O₁₂ The Li/Mn molar ratio of the final products was determined using a Shimadzu AA-650 double beam digital atomic absorption spectrophotometer. The sample solution was prepared by first dissolving the sample in a solution of sulfuric acid and hydrogen peroxide, then evaporating the acids, and redissolving the solid in purified water. The standard solutions of Li (LiCl in 0.01 N HCl) and Mn (Mn(NO₃)₂ in 0.01 N HNO₃) at concentrations of 1000 ppm were purchased from WAKO Pure Chemical Industries Ltd., and used for calibration after diluting to 1–10 ppm with purified water. The mean oxidation number of manganese ($Z_{\rm Mn}$) in the sample was determined from the active oxygen content as measured from the standard volumetric method (16) of KMnO₄ titration. The density was evaluated from the buoyancy of the sample in toluene using ME-210250/21060 density determination kits and a METTLER AT261 analytical balance. A special gem holder with a Ta vessel (15 mm high, 10 mm in diameter) and a Cu wire holder (70 mm high, 0.2 mm in diameter), was especially designed for powder samples. In order to fully displace the air within the sample powder by toluene, the sample within the Ta vessel was immersed in 200 ml of toluene for 24 hr under low pressure (500 mmHg) before the measurement of buoyancy. Powder X-ray diffraction patterns were collected at room temperature on a Rigaku RAX-I X-ray diffractometer with $CuK\alpha$ radiation monochromated by a graphite single crystal at 40 kV, 30 mA. The structural refinement was carried out with the Rietveld refinement program *RIETAN* (17) on a Fujitsu M-1800/30 (MSP) mainframe computer. The thermal stability of $\text{Li}_4\text{Mn}_5\text{O}_{12}$ was measured by TG using a Seiko SSC5020 thermal analyzer system at a heating/cooling rate of 10°C/min with 200 ml/min flow of O_2 or N_2 . #### 3. RESULTS AND DISCUSSION #### 3.1. Characterization of Well Crystallized Li₄Mn₅O₁₂ Powder X-ray diffraction patterns of the products from reactions between LiOAc + Mn(NO₃)₂; Li₂CO₃ + MnCO₃; Li₂CO₃ + MnO₂; Li₂CO₃ at 700°C for 24 hr under flowing O₂ are shown in Fig. 2. By comparing the sharpness and heights of the main reflection peaks, it is clear that the main phase Li₄Mn₅O₁₂ synthesized from the eutectic of LiOAc + Mn(NO₃)₂ has the best crystallinity, whereas that from Li₂CO₃ + MnCO₃ has the worst. This can be attributed to the following facts: (i) The decomposition temperature of MnCO₃ (370°C) and Li₂CO₃ (>600°C) is much higher than that of Mn(NO₃)₂ (129.5°C) FIG. 2. Powder X-ray diffraction patterns of $\text{Li}_4\text{Mn}_5\text{O}_{12}$ samples prepared at 700°C from various raw materials. and LiOAc (<200°), thereby retarding their ability to form Li₄Mn₅O₁₂. (ii) The precursor obtained from LiOAc + Mn(NO₃)₂ via liquid states should have higher uniformity and reactivity. Careful observation revealed that the magnitude of the shift of diffraction peaks to lower 2θ values, as a result of the formation of LiMn₂O₄ and Li₂MnO₃, was in the order corresponding to the starting manganese compounds, $Mn_2O_3 > MnCO_3 >$ MnO₂. Considering that MnCO₃ decomposes to a mixture of MnO₂ and Mn₂O₃ under the reaction conditions, it is evident that the trivalent Mn³⁺ portion of the precursor has a strong tendency to form LiMn₂O₄, as well as Li₂MnO₃, which precipitates from the reaction, thereby consuming the surplus Li. Therefore, it is essential to use Mn⁴⁺ precursors to synthesize well-crystallized Li₄Mn₅O₁₂. The measured composition, active oxygen content, and density data of Li₄Mn₅O₁₂ prepared under various conditions are given in Table 1. The Li/Mn molar ratios in the samples prepared from the eutectic of LiOAc and Mn(NO₃)₂ (denoted as AN) were found to be exactly 0.8, indicating the high homogeneity of the precursor. However, the Li/Mn ratio of the sample prepared from Li₂CO₃ + MnCO₃ (denoted as CC) was 0.88 which is significantly higher than 0.8 and probably due to the inhomogeneity of the precursor and the localized precipitation of Li₂MnO₃. Overall, the active oxygen contents of Li₄Mn₅O₁₂ samples were calculated to be somewhat lower than that for the case where it is assumed that all manganese ions are tetravalent. The maximum percentage of Mn⁴⁺ (Mn⁴⁺%) in the samples was estimated from | Sample ID | Li/Mn
(mole) | Density
(g/cm³) | Active oxygen% | | Mn ion state | | |----------------------------------|-----------------|--------------------|----------------|------------------|--------------|-------| | | | | Calculated | Measured | Z_{Mn} | Mn4+% | | ANT500-2D-O ₂ | | 3.91 ± 0.02 | 17.10 | 15.17 ± 0.04 | 3.75 | 93.7 | | (10 atm) | _ | 3.91 ± 0.02 | 16.18 | 15.15 ± 0.04 | 3.75 | 93.6 | | ANT600-2D-O ₂ | 0.80 ± 0.01 | 3.95 ± 0.02 | 16.18 | 15.12 ± 0.04 | 3.74 | 93.4 | | ANT700-3D-O ₂ | 0.80 ± 0.01 | 4.01 ± 0.02 | 17.10 | 15.36 ± 0.03 | 3.80 | 94.9 | | (10 atm) | 0.80 ± 0.01 | 4.02 ± 0.02 | 16.18 | 15.27 ± 0.03 | 3.78 | 94.3 | | ANT850-2D-O ₂ | <u> </u> | 4.12 ± 0.03 | 16.18 | 15.10 ± 0.03 | 3.73 | 93.2 | | CCT700-3D-O2 ^a | 0.88 ± 0.02 | 4.08 ± 0.03 | 16.18 | 14.79 ± 0.03 | 3.66 | 91.3 | | LiMn ₂ O ₄ | 0.50 ± 0.01 | 4.10 ± 0.03 | 13.27 | 13.36 ± 0.03 | 3.52 | 75.5 | | Li ₂ MnO ₃ | | 3.87 ± 0.01 | 13.70 | 13.75 ± 0.03 | 4.01 | 100.3 | TABLE 1 Composition, Active Oxygen Content, and Density Data for Li₄Mn₅O₁₂ Samples Prepared under Various Conditions and, for Comparison, the Data for the Standards LiMn₂O₄ and Li₂MnO₃ the active oxygen content to be 95%. In an attempt to oxidize the Mn³+ portion, the pressure of oxygen during the reaction and crystallization of the precursor obtained from LiOAc + Mn(NO₃)₂, was increased to 10 atm. The results for the sample synthesized under 10 atm of O₂ are shown in Table I along with those prepared under the same conditions but with flowing O₂. No improvement was observed in terms of the Mn⁴+% in these samples. Hence, increasing the oxygen pressure to 10 atm was not sufficient to fully prevent the Mn⁴+ from being reduced when the crystallization temperature was raised above 500°C. Based on these results, further characterization was limited to the samples prepared from LiOAc + Mn(NO₃)₂ with O₂ flowing. FIG. 3. Powder X-ray diffraction patterns of Li₄Mn₅O₁₂ samples prepared from the eutectic of LiOAc and Mn(NO₃)₂ at various temperatures, together with that of LiMn₂O₄. An offset of 1100 cps of each line was applied for clarity. Figure 3 shows powder X-ray diffraction patterns of $\text{Li}_4\text{Mn}_5\text{O}_{12}$ prepared at 500, 600, and 700°C from LiOAc + $\text{Mn}(\text{NO}_3)_2$, and for comparison, the standard LiMn₂O₄ is also presented. Clearly, the higher reaction temperature gave the sharper and higher diffraction peaks, and consequently the better crystallinity of $\text{Li}_4\text{Mn}_5\text{O}_{12}$. The minor monoclinic phase Li_2MnO_3 , however, became apparent as the reaction temperature was raised above 700°C. The diffraction peaks of monoclinic phase Li_2MnO_3 in the sample obtained at 700°C were negligible as shown in Figs. 2 and 3. All the detected reflection peaks were consistent with that of a cubic spinel LiMn_2O_4 , but with a visible shift to the higher $2\theta^\circ$ values corresponding to the contraction of the unit cell from $a = 8.242 \,\text{Å}$ for LiMn_2O_4 to $8.1616(5) \,\text{Å}$ for $\text{Li}_4\text{Mn}_5\text{O}_{12}$. Figure 4a shows the TG curve of sample ANT700-3D in O_2 . The sample was fairly stable at temperatures up to 600°C. However, at temperatures between 700 and 400°C we observed what is, at least to our knowledge, the first example for such compounds of a reversible 0.77% weight loss/gain. By assuming that this weight loss/gain results from the desorption/absorption of oxygen due to the reduction/oxidation $Mn^{4+} \Leftrightarrow Mn^{3+}$ $$\text{Li}_4 \text{Mn}_5^{4+} \text{O}_{12} \xrightarrow{\text{Heating}} \text{Li}_4 \text{Mn}_x^{3+} \text{Mn}_{(5-x)}^{4+} \text{O}_{(12-\frac{x}{2})} + \frac{x}{4} \text{ O}_2(g).$$ [5] It is calculated that the 0.77% weight loss from 600 to 700°C leads to the evolution of 0.12 O_2 from one Li₄Mn₅O₁₂ with the reduction of 9.4% of Mn⁴⁺ to Mn³⁺, and upon cooling from 700 to 400°C, about 0.12 O_2 is absorbed from the atmosphere, i.e., Li₄Mn₅⁴⁺O₁₂ \Leftrightarrow Li₄Mn_{0.48}Mn_{4.52}O_{11.76} + 0.12 O₂. Details about this reversible weight loss/gain will be described separately. ^a This sample was prepared by reacting Li₂CO₃ with MnCO₃ at 700°C for 3 days under flowing O₂. FIG. 4. TG-DTG curves of Li₄Mn₅O₁₂ (sample ANT700-3D) measured with the 200 ml/min flow of (a) O₂ and (b) N₂ together with that of LiMn₂O₄. A significant effect of heating atmosphere on the stability of $\text{Li}_4\text{Mn}_5\text{O}_{12}$ was observed. Figure 4b shows the TG-DTG curves of sample ANT700-3D measured with flowing N₂, along with that of LiMn₂O₄ (the broken lines). The first weight loss (~3%) observed between 500 and 700°C can be attributed to the evolution of O₂ during the decomposition of $\text{Li}_4\text{Mn}_5\text{O}_{12}$ to LiMn_2O_4 and $\text{Li}_2\text{Mn}_3\text{O}_3$ which corresponds to a weight loss of 3.24% according to $$\text{Li}_4\text{Mn}_5\text{O}_{12} \rightarrow 2\text{LiMn}_2\text{O}_4 + \text{Li}_2\text{MnO}_3 + \frac{1}{2}\text{O}_2 \uparrow$$. [6] A second weight loss proceeds via the decomposition of $LiMn_2O_4$. The decomposition of $Li_4Mn_5O_{12}$ in N_2 was confirmed by X-ray diffraction data. Figure 5 shows the X-ray diffraction patterns of sample ANT700-3D after reheating at 580°C for 24 hr with 200 ml/min of N_2 or O_2 flowing. No structural change was detected in the sample reheated in O_2 , but the structure of the sample reheated in N_2 changed remarkably as detected by the splitting and broadening of the reflection peaks. These peaks were as- signed to the reflections from both $LiMn_2O_4$ and Li_2MnO_3 . Consequently, the defective spinel $Li_4Mn_5O_{12}$ has better thermal stability in the oxygenic atmosphere than in a reductive atmosphere such as N_2 . ## 3.2. Structure Refinement of Li₄Mn₅O₁₂ by the Rietveld Method Figure 6 shows the Rietveld refinement plot of sample ANT700-3D from which the structural data of Li₄Mn₅O₁₂ were determined; 5250 data points per scan were collected between $2\theta \approx 15^{\circ}-120^{\circ}$ with a step interval of 0.02°. The simultaneous refinement was carried out on two crystalline phases: phase 1-Li₄Mn₅O₁₂ (space group $Fd\bar{3}m$, No. 227) and phase 2-Li₂MnO₃ (C/2m, No. 12-1). The initial structure model for Li₄Mn₅O₁₂/Li_{1.33}Mn_{1.67}O₄ was adopted from Blasse's report (13). The crystallographic parameters of Li₂MnO₃ were adopted from Ref. (14) by Strobel and Lambert-Andron. Only the scale factor and cell parameters for Li₂MnO₃ were refined because of its small content (\sim 5%). By performing a simultaneous refinement, the "goodness of fit" indicator, S, for Li₄Mn₅O₁₂ was improved from 1.46 for single phase refinement to 1.31. The improvements in R factors for $\text{Li}_4\text{Mn}_5\text{O}_{12}$ ranged from: $R_{\text{WP}} = 16.06\%$ to 14.48%, $R_{\text{P}} =$ 11.14% to 9.97%, $R_B = 2.72\%$ to 2.02%, and $R_F = 2.27\%$ to 1.74%, respectively. The crystallographic parameters of Li₄Mn₅O₁₂ are listed in Table 2. The site occupancy of the octahedrally coordinated manganese ions (16d sites) was refined as 0.84 with an estimated standard deviation (esd) of 0.02. This is in good agreement with 0.833 (1.67/2) of the ideal arrangement Li_{1.33}Mn_{1.67}O₄ (13) in which 0.33 Li ions are required to compensate for the imbalance in charge at the 16d sites. It is, however, very difficult to determine the occupancy of Li ions from X- FIG. 5. Powder X-ray diffraction patterns of $\text{Li}_4\text{Mn}_5\text{O}_{12}$ (sample ANT700-3D) after reheating at 580°C for 24 hr with O_2 and N_2 flowing. FIG. 6. Rietveld refinement plot of sample ANT700-3D. The observed and calculated intensity data (I_o and I_c) are plotted in the upper field as points and as a solid-line curve, respectively. The difference $\Delta I = I_o - I_c$ is shown in the lower field. The tick marks below the pattern indicate the positions of all possible Bragg reflections from phase 1 (upper) and phase 2 (lower). ray diffraction data, because Li is a light scatterer of X-rays and does not contribute much to the scattering amplitude of the individual reflections. For this reason, it is still not clear whether the presence of Mn³⁺ will affect the distribution of Li ions on 16d sites. At this stage, we can conclude that the distribution of Li and Mn ions in Li₄Mn₅O₁₂ appears to be close to the ideal distribution (Li)_{8a}[Li_{0.33}Mn_{1.67}]_{16d}O₄. Further verification with neutron diffraction is in progress. Efforts have been made to analyze the quantities of Li₂MnO₃ and Li₄Mn₅O₁₂ in the samples prepared at 500 850°C. Hill and co-workers (18–21) derived a very simple relationship for determining the phase abundance by the TABLE 2 Crystallographic Parameters of Li₄Mn₅O₁₂ Crystal Prepared from LiOAc and Mn(NO₃)₂ at 700°C with Flowing O₂ | Atom | Site | x = y = z | g | $B(\mathring{A}^2)$ | |-----------|-------------|-----------|---------|---------------------| | Li(1) | 8 <i>a</i> | 0.0 | 1.0 | 1.0 | | $Li(2)^b$ | 16 <i>d</i> | 0.625 | 0.16(2) | 0.72(6) | | Mn | 16 <i>d</i> | 0.625 | 0.84(2) | 0.72(6) | | 0 | 32 <i>e</i> | 0.3874(4) | 1.0 | 1.6(2) | Note. All numbers in parentheses represent the esd's. g is the site occupancy. $R_{\rm WP} = 14.48\%$, $R_{\rm P} = 9.97\%$, $R_{\rm B} = 2.02\%$, $R_{\rm F} = 1.74\%$ Rietveld method $$W_p = S_p(ZMV)_p / \sum_{i=1}^n S_i(ZMV)_i,$$ where W is the relative weight fraction of phase p in a mixture of n phase, and S, Z, M, and V are, respectively, the Rietveld scale factor, the number of formula units per unit cell, the mass of the formula unit (in atomic mass units), and the unit cell volume. The amount of amorphous or noncrystalline material (W_a) in the sample was determined by adding Si powder in a weight fraction W_s , as an internal standard phase. In this case, the absolute weight fractions of the other identified components p are given by $$W_p = W_s S_p (ZMV)_p / S_s (ZMV)_s$$ and $$W_{\mathbf{a}} = 1 - \sum_{i=1}^{n} W_{i}.$$ The final results along with the lattice parameters and measured density data are shown in Table 3. Sample ANT700-3D had a high crystalline Li₄Mn₅O₁₂ content of 95%. Samples obtained at temperatures below 600°C contained about 2–6% of an amorphous component. Also an amount of crytalline Li₂MnO₃ and significant LiMn₂O₄ were observed in the sample prepared at 850°C. The amount of LiMn₂O₄ was determined from both Eq. [6] and the active oxygen content. The calculated densities of these samples, on the basis of the phase components ^a The "goodness of fit" indicator, S, and R factors were defined as described on p. 22 of Ref. (17). ^b Constraints on the site occupancy $g_{\rm Mn} + g_{\rm Li(2)} = 1$ and isotropic thermal parameter $B_{\rm Mn} = B_{\rm Li(2)}$ were applied. | TABLE 3 | | | | | | | |---|--|--|--|--|--|--| | Structural Parameters and the Results of a Quantitative Phase Analysis for Li ₄ Mn ₅ O ₁₂ Samples by the Rietveld Method | | | | | | | | as well as for LiMn ₂ O ₄ and Li ₂ MnO ₃ | | | | | | | | Sample ID | Li₄Mn ₅ O ₁₂ phase | | Calculated phase | | | Density (g/cm ³) | | |----------------------------------|--|--------------------------------|---|---------|------|------------------------------|----------| | | a (Å) | g _(Mn) ^a | ID | Density | % | Calculated | Measured | | ANT500-2D | | 0.81(2) | Li ₄ Mn ₅ O ₁₂ | 4.02 | 91.1 | _ | 3.91(2) | | | 8.1361(5) | | Amorphous | _ | 6.0 | | | | | | | Li_2MnO_3 | 3.91 | 2.9 | | | | ANT600-2D | | 0.82(3) | $Li_4Mn_5O_{12}$ | 4.03 | 92.6 | | 3.95(2) | | | 8.1467(8) | | Amorphous | _ | 2.0 | | | | | | | Li_2MnO_3 | 3.90 | 5.4 | | | | ANT700-3D | 8,1616(5) | 0.84(2) | $Li_4Mn_5O_{12}$ | 4.04 | 95.1 | 4.03 | 4.02(2) | | AN 1 /00-3D | 8.1010(3) | | Li_2MnO_3 | 3.88 | 4.9 | | | | ANT850-1D | | 0.85(9) | $Li_4Mn_5O_{12}$ | 4.07 | 80.6 | 4.10 | 4.12(3) | | | 8.1813(5) | | Li_2MnO_3 | 3.88 | 6.5 | | | | | | | LiMn ₂ O ₄ | 4.39 | 12.9 | | | | LiMn₂O₄ | 8.2411(4) | 0.95(7) | LiMn ₂ O ₄ | 4.17 | 100 | 4.17 | 4.10(3) | | Li ₂ MnO ₃ | _ | | Li ₂ MnO ₃ | 3.88 | 100 | 3.88 | 3.87(1) | Note. Numbers in parentheses represent the error in the least significant figure. determined by the Rietveld method, are close to the measured values within experimental error. Considering the difficulty in the synthesis of single phase Li₄Mn₅O₁₂, it is concluded that the quantitative phase analysis method provides indispensable information about the phase components. #### CONCLUSION Well-crystallized Li₄Mn₅O₁₂ has been prepared from the eutectic of LiOAc and Mn(NO₃)₂ at 700°C for 1–3 days with O₂ flowing. The molar ratio of Li/Mn in the final products was determined to be exactly 0.80 from atomic absorption spectroscopy. The percentage of tetravalent manganese present in the final products was evaluated to be 95% based on active oxygen content. Rietveld refinement with powder X-ray diffraction data indicated that Li₄Mn₅O₁₂ possesses a cubic spinel structure with a = 8.1616(5) Å, space group $Fd\bar{3}m$. Li₄Mn₅O₁₂ is stable in oxygenic atmosphere up to 600°C, but decomposes to LiMn₂O₄ and Li₂MnO₃ at 530°C in N₂. #### REFERENCES - 1. D. G. Wickham and W. Groft, J. Phys. Chem. Solids 7, 351 (1958). - 2. M. M. Thackeray, in "Proceedings Mat. Res. Soc. Symposium Boston, Nov./Dec. 1988," Vol. 135, p. 585, 1989. - M. M. Thackeray, in "Proceedings, 5th International Seminar on Lithium Battery Technology and Application, Deerfield Beach, Florida, March 4-6, 1991." - M. M. Thackeray, W. I. F. David, P. G. Brouce, and J. B. Goodenough, *Mater. Res. Bull.* 18, 461 (1983). - M. M. Thackeray, P. J. Johnson, L. A. Picciotto, P. G. Brouce, and J. B. Goodenough, *Mater. Res. Bull.* 19, 179 (1984). - W. I. F. David, M. M. Thackeray, L. A. Picciotto, and J. B. Goodenough, J. Solid State Chem. 67, 316 (1984). - A. de Kock, M. H. Rossouw, L. A. Picciotto, M. M. Thackeray, W. I. F. David, and R. M. Ibberson, *Mater. Res. Bull.* 25, 657 (1990) - 8. M. H. Rossouw, A. de Kock, L. A. Picciotto, M. M. Thackeray, W. I. F. David, and R. M. Ibberson, *Mater. Res. Bull.* 25, 173 (1990) - M. M. Thackeray, A. de Kock, M. H. Rossouw, D. Liles, R. Bittihn, and D. Hoge, in "Proceedings, Electrochem. Soc.," Vol. 91-3, p. 326. 1991. [Proc. Primary Secondary Lithium Batteries, 1990] - K. Ooi, Y. Miya, and S. Katoh, Solvent Extr. Ion Exch 5(3), 561 (1987). - 11. K. Ooi, Y. Miya, and J. Sakakihara, Langmuir 7, 1167 (1991). - 12. Q. Feng, Y. Miya, H. Kanoh, and K. Ooi, Langmuir 8, 1861 (1992). - 13. G. Blasse, Philips Res. Rep. Suppl. 3, 122 (1964). - P. Strobel and B. Lambert-Andron, J. Solid State Chem. 75, 90 (1988). - A. Riou, A. Lecerf, Y. Gerault, and Y. Cudennec, *Mater. Res. Bull.* 27, 267 (1992). - Japan Industrial Standard (JIS) M8233-1982, "Determination of Active Oxygen Content in Manganese Ores." - F. Izumi, in "The Rietveld Method" (R. A. Young, Ed.), p. 236. Oxford Univ. Press, New York, 1993. - R. J. Hill, in "The Rietveld Method" (R. A. Young, Ed.), p. 91. Oxford Univ. Press, New York, 1993. - 19. R. J. Hill and C. J. Howard, J. Appl. Crystallogr. 20, 467 (1987). - C. J. Howard, R. J. Hill, and M. A. M. Sufi, Chem. Austral. Oct., 367 (1988). - 21. R. J. Hill, Powder Diffr. 6(2), 74 (1991). ^a Site occupancy of the octahedrally coordinated manganese ions (16d sites).